visbrain.objects.ImageObj

class visbrain.objects.ImageObj(name, data=None, xaxis=None, yaxis=None, cmap='viridis', clim=None, vmin=None, under='gray', vmax=None, over='red', interpolation='nearest', max_pts=-1, parent=None, transform=None, verbose=None, **kw)[source][source]

Create a single image object.

Parameters:
dataarray_like

Array of data. If data.ndim in [1, 2] the color is inferred from the data. Otherwise, if data.ndim is 3, data is interpreted as color if the last dimension is either 3 (RGB) or 4 (RGBA).

xaxisarray_like | None

Vector to use for the x-axis (number of columns in the image). If None, xaxis is inferred from the second dimension of data.

yaxisarray_like | None

Vector to use for the y-axis (number of rows in the image). If None, yaxis is inferred from the first dimension of data.

climtuple | None

Colorbar limits. If None, clim=(data.min(), data.max())

cmapstring | None

Colormap name.

vminfloat | None

Minimum threshold of the colorbar.

understring/tuple/array_like | None

Color for values under vmin.

vmaxfloat | None

Maximum threshold of the colorbar.

understring/tuple/array_like | None

Color for values over vmax.

interpolationstring | ‘nearest’

Interpolation method for the image. See vispy.scene.visuals.Image for availables interpolation methods.

max_ptsint | -1

Maximum number of points of the image along the x or y axis. This parameter is essentially used to solve OpenGL issues with very large images.

transformVisPy.visuals.transforms | None

VisPy transformation to set to the parent node.

parentVisPy.parent | None

Markers object parent.

verbosestring

Verbosity level.

kwdict | {}

Optional arguments are used to control the colorbar (See ColorbarObj).

Notes

List of supported shortcuts :

  • s : save the figure

  • <delete> : reset camera

Examples

>>> import numpy as np
>>> from visbrain.objects import ImageObj
>>> n = 100
>>> time = np.r_[np.arange(n - 1), np.arange(n)[::-1]]
>>> time = time.reshape(-1, 1) + time.reshape(1, -1)
>>> im = ImageObj('im', time, cmap='Spectral_r', interpolation='bicubic')
>>> im.preview(axis=True)

Methods

__init__(name[, data, xaxis, yaxis, cmap, ...])

Init.

animate([step, interval, iterations])

Animate the object.

copy()

Get a copy of the object.

describe_tree()

Tree description.

preview([bgcolor, axis, xyz, show, obj, ...])

Previsualize the result.

record_animation(name[, n_pic, bgcolor])

Record an animated object and save as a *.gif file.

render()

Render the canvas.

screenshot(saveas[, print_size, dpi, unit, ...])

Take a screeshot of the scene.

set_data(data[, xaxis, yaxis, clim, cmap, ...])

Set data to the image.

set_shortcuts_to_canvas(canvas)

Set shortcuts to a VisbrainCanvas.

to_dict()

Return a dictionary of all colorbar args.

to_kwargs([addisminmax])

Return a dictionary for input arguments.

update()

Fonction to run when an update is needed.

update_from_dict(kwargs)

Update attributes from a dictionary.

Examples using visbrain.objects.ImageObj

Image, time-frequency map and spectrogram objects

Image, time-frequency map and spectrogram objects