visbrain.objects.TimeFrequencyObj

class visbrain.objects.TimeFrequencyObj(name, data=None, sf=1.0, method='fourier', nperseg=256, f_min=1.0, f_max=160.0, f_step=1.0, baseline=None, norm=None, n_window=None, overlap=0.0, window=None, c_parameter=20, cmap='viridis', clim=None, vmin=None, under='gray', vmax=None, over='red', interpolation='nearest', max_pts=-1, parent=None, transform=None, verbose=None, **kw)[source][source]

Compute the time-frequency map (or spectrogram).

The time-frequency decomposition can be assessed using :

  • The fourier transform

  • Morlet’s wavelet

  • Multi-taper

Parameters:
namestring | None

Name of the time-frequency object.

dataarray_like

Array of data of shape (N,)

sffloat | 1.

The sampling frequency.

method{‘fourier’, ‘wavelet’, ‘multitaper’}

The method to use to compute the time-frequency decomposition.

npersegint | 256

Length of each segment. Argument pass to the scipy.signal.spectrogram function (for ‘fourier’ and ‘multitaper’ method).

overlapfloat | 0.

Overlap between segments. Must be between 0. and 1.

f_minfloat | 1.

Minimum frequency (for ‘wavelet’ method).

f_maxfloat | 160.

Maximum frequency (for ‘wavelet’ method).

f_stepfloat | 2.

Frequency step between two consecutive frequencies (for ‘wavelet’ method).

baselinearray_like | None

Baseline period (for ‘wavelet’ method).

normint | None

The normalization type (for ‘wavelet’ method).. See the normalization function.

n_windowint | None

If this parameter is an integer, the time-frequency map is going to be averaged into smaller windows (for ‘wavelet’ method).

window{‘flat’, ‘hanning’, ‘hamming’, ‘bartlett’, ‘blackman’}

Windowing method for averaging. By default, ‘flat’ is used for Wavelet and ‘hamming’ for Fourier.

c_parameterint | 20

Parameter ‘c’ described in doi:10.1155/2011/980805 (for ‘multitaper’ method)

climtuple | None

Colorbar limits. If None, clim=(data.min(), data.max())

cmapstring | None

Colormap name.

vminfloat | None

Minimum threshold of the colorbar.

understring/tuple/array_like | None

Color for values under vmin.

vmaxfloat | None

Maximum threshold of the colorbar.

overstring/tuple/array_like | None

Color for values over vmax.

interpolationstring | ‘nearest’

Interpolation method for the image. See vispy.scene.visuals.Image for availables interpolation methods.

max_ptsint | -1

Maximum number of points of the image along the x or y axis. This parameter is essentially used to solve OpenGL issues with very large images.

transformVisPy.visuals.transforms | None

VisPy transformation to set to the parent node.

parentVisPy.parent | None

Markers object parent.

verbosestring

Verbosity level.

kwdict | {}

Optional arguments are used to control the colorbar (See ColorbarObj).

Notes

List of supported shortcuts :

  • s : save the figure

  • <delete> : reset camera

Examples

>>> import numpy as np
>>> from visbrain.objects import TimeFrequencyObj
>>> n, sf = 512, 256  # number of time-points and sampling frequency
>>> time = np.arange(n) / sf  # time vector
>>> data = np.sin(2 * np.pi * 25. * time) + np.random.rand(n)
>>> tf = TimeFrequencyObj('tf', data, sf)
>>> tf.preview(axis=True)

Methods

__init__(name[, data, sf, method, nperseg, ...])

Init.

animate([step, interval, iterations])

Animate the object.

copy()

Get a copy of the object.

describe_tree()

Tree description.

preview([bgcolor, axis, xyz, show, obj, ...])

Previsualize the result.

record_animation(name[, n_pic, bgcolor])

Record an animated object and save as a *.gif file.

render()

Render the canvas.

screenshot(saveas[, print_size, dpi, unit, ...])

Take a screeshot of the scene.

set_data(data[, sf, method, nperseg, f_min, ...])

Compute TF and set data to the ImageObj.

set_shortcuts_to_canvas(canvas)

Set shortcuts to a VisbrainCanvas.

to_dict()

Return a dictionary of all colorbar args.

to_kwargs([addisminmax])

Return a dictionary for input arguments.

update()

Fonction to run when an update is needed.

update_from_dict(kwargs)

Update attributes from a dictionary.

Examples using visbrain.objects.TimeFrequencyObj

Image, time-frequency map and spectrogram objects

Image, time-frequency map and spectrogram objects